ESP: The Open Source SoC Platform
Release 2021.1.0

Columbia University

Mar 03, 2021

9

Guide — How to: design a single-core SoC
Target FPGA board
SoC configuration

Debug link configuration

41 a)Directlink
4.2 b)Link througharouter
ESP Cache Hierarchy

Optional: HLS-Based Cache Hierarchy

RTL simulation

FPGA prototyping

8.1 Bitstream L
8.2 Bare-metal and Linux applications
8.3 FPGA programming
84 UARTinterface.
85 TestingonFPGA,
86 SSH.

FPGA prototyping with prebuilt material

10 Indices and tables

CONTENTS:

[e e}

11

13

15

17

..................... 17
..................... 17
..................... 17
..................... 18
..................... 18
..................... 19

21

23

CHAPTER
ONE

GUIDE - HOW TO: DESIGN A SINGLE-CORE SOC

This guide illustrates how to generate and test a minimal single-core ESP SoC. In doing so, this tutorial covers the
basics of SoC configuration, full-system RTL simulation and FPGA prototyping with the ESP platform.

* Target FPGA board
* SoC configuration
* Debug link configuration
— a) Direct link
— b) Link through a router
e ESP Cache Hierarchy
* Optional: HLS-Based Cache Hierarchy
* RTL simulation
* 'PGA prototyping

Bitstream

Bare-metal and Linux applications

FPGA programming

UART interface

Testing on FPGA
- SSH
* FPGA prototyping with prebuilt material

Note: The users have access to prebuilt material to run the tutorial on an FPGA, without executing all
the previous steps. See the ‘FPGA prototyping with prebuilt material’ section at the end of this guide.

ESP: The Open Source SoC Platform, Release 2021.1.0

2 Chapter 1. Guide — How to: design a single-core SoC

CHAPTER
TWO

TARGET FPGA BOARD

ESP currently supports multiple FPGA boards as listed in the homepage. The socs/ directory of ESP contains a
design folder for each of the target FPGA boards. The steps described in this guide are identical for all the FPGA
targets, but they should be run from the design folder in socs/ corresponding to the desired target.

For this tutorial we target the popular Xilinx VC707 evaluation board based on the Virtex7 FPGA.

Move to the Xilinx VC707 design folder
cd <esp>/socs/xilinx-vc707-xc7vx485t

Back to top

ESP: The Open Source SoC Platform, Release 2021.1.0

4 Chapter 2. Target FPGA board

CHAPTER
THREE

SOC CONFIGURATION

Each design folder comes with a default SoC configuration (socs/defconfig/
esp_<design-folder-name>_defconfig), which consists of a 2x2 mesh with one processor tile, one
memory tile containing a memory controller and one auxiliary tile. This is the minimum set of tiles for a functioning
ESP SoC. Depending on the design folder the default configuration may differ in the processor core selection (e.g.
RISC-V Ariane or SparcV8 Leon3) and in the presence of the ESP cache hierarchy.

The SoC configuration can be visualized and modified with the ESP configuration GUI:

make esp-xconfig

The figure below shows the GUI with the default configuration for the Xilinx VC707 board. In this case the selected
CPU is the Leon3 processor and the ESP caches are enabled: one 32KB 4-ways set associative private L2 cache for
the processor tile and one 256KB 16-ways set associative last-level cache (LLC) on the memory tile. In this design
the LLC serves only the processor tile and the Ethernet MAC in the miscellaneous (IO) tile.

ESP: The Open Source SoC Platform, Release 2021.1.0

ESP SoC Generator

General SoC configuration:
virtex7
SLD FPU
No JTAG
Eth {192.168.1.8)
Use SGMII
No SVGA
With synchronizers

Data transfers:

Cache Configuration:
" Bigphysical area Use Caches: v

* Scatter/Gather

EEEEEI

Implementation: SystemVerilog —
L2 SETS: 512 —
L2 WAYS: 4 —
LLC SET5: 1024 —
LLC WAYS: 16 — |
ACC L2 SETS: 512 — |
ACC L2 WAYS: 4 —

CPU Architecture:

Core: |eon3 —'|

NoC configuration

NoC Tile Configuration

Rows: ’2_(:0!5: ’2_
Config

[~ Menitor DDR bandwidth
[” Monitor memory access
| Moniteor injection rate

[Monitor router ports

™ Monitor accelerator status
[~ Monitor L2 Hit/Miss

[~ Monitor LLC Hit/Miss

™ Monitor DVFS

Num CPUs: 1

Num memaory controllers: 1
Num /O tiles: 1

Num accelerators: 0

Num CLK regions: 1

Num CLKBUF: 0

VF points: ’-’l_

[CHasL2 | GkReg: [0 3 ™ HasPLL I CLKBUF

[T Has L2 | Clk Reg: |0 ﬁ [T Has PLL [T CLKBUF || ¥ Has L2 | Clk Reg: [0 g [T Has PLL [T CLK BUF
(1,0 (1.1)
empty — | 10 |
empty

" Has L2

ClkReg: [0 = I HasPLL [CLK BUF

Generate 5oC config

width="684px” align="center”}

Note: The ESP caches do not work with the Ariane core yet. This feature is in the works.

Back to top

Chapter 3. SoC configuration

{:height="812px"”

CHAPTER
FOUR

DEBUG LINK CONFIGURATION

The ESP SoC embeds some IP blocks from the open source VHDL library GRLIB, including the Leon3 processor
core and some I/O peripherals. The default configuration for GRLIB is loaded from the file socs/defconfig/
grlib_<design-folder-name>_defconfig. The GRLIB configuration utility starts with the following com-
mand:

make grlib-xconfig

One relevant configuration parameter is the static IP assigned to the Ethernet debug interface. A host machine can
control the debug interface of an ESP SoC through Ethernet only. By clicking on Debug link on the GRLIB GUI it is
possible to configure the static IP of the debug unit by editing the two IP address fields.

ESP: The Open Source SoC Platform, Release 2021.1.0

Debug Link |

“ y| ® n| JTAG Debug Link Help &

“ y| © n| Ethemet Debug Communication Link (EDCL) Help
16| Ethermnet/AHB bridge buffer size (kbytes) Help
COAS8 MSE 16 bits of IP address (hex) Help
0104 LSB 16 bits of IP address (hex) Help
535522 MSBE 24 bits of ethermn number (hex) Help
FOO707 LSB 24 bits of ethern number (hex) Help

“¥| ® n| Programmable 4-bit LSB of MAC/IP address Help

= = Help Y

Main Menu Next Prev

Given an ESP SoC on FPGA there are two possible ways to access it through Ethernet from a host machine: with a
direct link or through a router. In the following, as an example, we assume you selected the IP address of the debug
linkto 192.168.1.2 (MSB =C0A8 and LSB=0102).

Back to top

4.1 a) Direct link

Connect with an Ethernet cable the Ethernet ports of FPGA and of the host computer that you wish to interact with the
ESP SoC on FPGA. From your system settings, turn off the wired internet connection. Then, from a terminal, assign a
valid IP address to your interface using the same three numbers of the ESP debug link (192 .168.1 in this example)
and varying the last one. This guarantees that your host machine will be in the same subnet as the ESP debug link, so
that it will be possible to establish a connection between the two.

In this example we assume your Ethernet interface name is et h0. (You can find out the specific name of the interface
by typing i fconfig in your shell.)

assign an IP address to your host machine
sudo ifconfig eth0 192.168.1.3

8 Chapter 4. Debug link configuration

ESP: The Open Source SoC Platform, Release 2021.1.0

Back to top

4.2 b) Link through a router

With two Ethernet cables, connect the Ethernet ports of both your FPGA board and your host computer to a router.
The IP address assigned to the ESP debug link must be in the subnet selected by the router. For instance, if the router
assigns IP addresses in the range 192.168.1.2t0192.168.1.255, then any IP address in that range can be used
for the ESP debug link. From the admin webpage of the router you should be able to change the range of assigned
addresses, as well as to reserve a specific IP to the MAC address corresponding to the ESP debug link. Reserving the
IP will guarantee that no other device connected to the router will get the IP of the debug link through a DHCP request.

In case your host computer received the same IP you selected for the debug link, you can force a new lease with the
following:

assign an IP address to your host machine
sudo ifconfig ethO0 192.168.1.3

Back to top

4.2. b) Link through a router 9

ESP: The Open Source SoC Platform, Release 2021.1.0

10 Chapter 4. Debug link configuration

CHAPTER
FIVE

ESP CACHE HIERARCHY

With a single-core SoC, you have the option of using ESP’s cache hierarchy, which adds a private L2 cache to CPUs
(and optionally, to accelerators) and a last-level cache to the memory tile (the LLC is partitioned if multiple memory
tiles are selected). The checkbox labeled Use Caches enables the cache hierarchy, which is the default setting.
There are two options for the implementation of the caches — SystemVerilogand SystemC + HLS — which can
be selected from the dropdown menu labeled Implementation in the ESP configuration GUI The SystemVerilog
caches offer area savings and slight timing improvements and is the default. Note that with the SystemVerilog imple-
mentation , the CPU L2 and accelerator L2 caches must be configured to have the same number of sets and ways. For
more information on the HLS-based cache hierarchy, read the section below.

Back to top

11

ESP: The Open Source SoC Platform, Release 2021.1.0

12 Chapter 5. ESP Cache Hierarchy

CHAPTER
SIX

OPTIONAL: HLS-BASED CACHE HIERARCHY

As shown above, the default SoC for the Xilinx VC707 board has the ESP cache hierarchy enabled. By default, the
RTL implementation is selected. If you want to switch to the SystemC version, select SystemC + HLS from the
Implementation dropdown in the ESP configuration GUI. This feature is particularly useful to conduct architec-
tural research on coherence, because the SystemC model is significantly easier to edit than the RTL implementation.

To generate the RTL for the SystemC version of the caches, a one-time HLS run is required for every desired combi-
nation of sets and ways of the caches.

make 12-hls
make llc-hls

These commands run HLS with Cadence Stratus HLS for all the combinations of {sets, ways, words per line, word
bitwidth, address bitwidth} specified in HLS TCL scripts: systemc/12/stratus/project.tcl, systemc/
llc/stratus/project.tcl. The first HLS run takes a long time, because it synthesizes hardware resources
from scratch, whereas the subsequent HLS runs are much faster.

The ESP cache hierarchy is mandatory only for multi-core ESP SoCs. If the caches are not enabled in the ESP
configuration GUI, or if using the RTL implementation, this step can be skipped.

Note: A Verilog implementation of the HLS-based cache hierarchy will be released soon (pending ap-
proval).

Back to top

13

ESP: The Open Source SoC Platform, Release 2021.1.0

14 Chapter 6. Optional: HLS-Based Cache Hierarchy

CHAPTER
SEVEN

RTL SIMULATION

Users can run a full-system RTL simulation with the following targets:

Modelsim
make sim[-gui]

Incisive
make ncsim[-gui]

Once Modelsim starts you can launch with the simulation with the command:

make run --all

These simulation targets compile the RTL from ESP and from some Xilinx libraries. In addition to RTL files, the
simulation targets cross-compile the default C application systest . c for the target processor. Then the simulator
starts either in the terminal (e.g. make sim) or with the GUI (e.g. make sim-gui).

Users can edit systest . c at will, as long as the baremetal cross-compiler can generate the target binary. The output
of this compilation are the memory files for simulation (prom. srec and ram. srec) and the target binaries for
FPGA emulation of the baremetal test (prom.bin and systest .bin).

Users can run the software compilation step independently from the simulation target with:

make soft

15

ESP: The Open Source SoC Platform, Release 2021.1.0

16 Chapter 7. RTL simulation

CHAPTER
EIGHT

FPGA PROTOTYPING

8.1 Bitstream

The deployment of an ESP SoC on FPGA requires a FPGA bitstream, whereas its testing requires the binary of a
baremetal application and/or a Linux image.

Below is the target to generate the FPGA bitstream with Xilinx Vivado from the design folder based on what specified
in the GRLIB and ESP configurations. After Vivado completes the bitstream generation, a link to the bitstream top.
bit is created in the SoC design folder.

Logic synthesis for FPGA with Xilinx Vivado
make vivado-syn

Back to top

8.2 Bare-metal and Linux applications

The binary of the baremetal application (prom.binand systest .bin)iscompiled withmake soft asdescribed
in the previous section.

Linux is also compiled from the ESP SoC folder. This allows users to maintain different Linux configurations and
root filesystem overlays for each SoC folder. The following command configures and compiles Linux with the root
filesystem template created with the scripts to build the toolchain. Users can add, edit or remove files from the local
copy of the filesystem placed in sysroot/. Re-running the Linux target below will update the embedded root file
system. The final output of this target is a bootable Linux image (1inux.bin).

’make linux

Back to top

8.3 FPGA programming

Assuming the FPGA host computer is 1ocalhost and the TCP port is the default 3121, the ESP instance can be
deployed on FPGA with the following command:

Program FPGA
FPGA_HOST=localhost XIL_HW SERVER _PORT=3121 make fpga-program

Back to top

17

ESP: The Open Source SoC Platform, Release 2021.1.0

8.4 UART interface

After programming the FPGA, the ESP UART interface must be opened with a serial communication program (e.g.
minicom) to monitor the programs executing on the ESP instance.

With the USB cable provided by the FPGA board vendor, connect the UART port to any USB port on your computer.
Then run dme sg to find the device name assigned to the new serial interface. Here is an example:

$ dmesg | grep tty
[352854.825049] usb 1-2: cp210x converter now attached to ttyUSBO

For instance, if your serial interface has been labeled ttyUSBO, you may connect to /dev/ttyUSBO with your
favorite serial communication program. In this example we will refer to Minicom. The serial interface should be
configured to use no parity bits, no flow control and a baud rate of 38400. To configure Minicom launch it with sudo
minicom -s.

| Serial Device : /dev/ttyUSBO
| Lockfile Location . /var/lock

| Callin Program

| Callout Program
\
\
\

Hardware Flow Control : No

\
\
\
: \
Bps/Par/Bits : 38400 8N1 |
\
Software Flow Control : No |

Now you can launch Minicom:

’minicom -D /dev/ttyUSBO -b 38400 ‘

Please note that standard users on Linux do not have permission to connect to a serial interface. You can launch your
terminal with sudo, or add yourself to the dialout group. Then you must log out in order for the group change to
take effect.

’sudo usermod —-aG dialout <USERNAME>

Back to top

8.5 Testing on FPGA

Finally here are the commands to connect to the ESP SoC on FPGA and either run a baremetal program or boot
Linux. Make sure to define FPGA_HOST and XIL_HW_SERVER_PORT also in this case or edit their value in the
local Makefile of the design folder you working into.

Run bare-metal program (systest.bin)
make fpga-run

Run Linux (linux.bin)

make fpga-run-linux

The make fpga-run-linux command also runs the make fpga-program target as a dependency, so you
don’t need to run it explicitly. To login into Linux use root as username and openesp as password. The latter is set
by buildroot when the template for the root file system is generated (see setup).

Back to top

18 Chapter 8. FPGA prototyping

ESP: The Open Source SoC Platform, Release 2021.1.0

8.6 SSH

Once Linux boot has complete, it is possible to use SSH to access ESP remotely, as well as to move data to and from
the ESP SoC on FPGA.

The TP address is printed on the serial console at the end of the boot process: udhcpc: lease of
<esp—-ip—-address> obtained. Alternatively, you can get the network interface configuration and IP address
with i fconfig

From a machine in the same network as the ESP instance on FPGA, you can use ssh or scp and pass the dynamic IP
leased at the end of the Linux boot.

touch file_to_transfer
scp file_to_transfer root@<esp-ip-address>:~
ssh root@<esp-ip-address>

From the ESP Linux terminal you can use ssh and scp commands as in these examples:

touch file_to_transfer
ssh <username>@<host-static-ip>
scp file_to_transfer <username>@<host-static—-ip>:~

Back to top

8.6. SSH 19

ESP: The Open Source SoC Platform, Release 2021.1.0

20

Chapter 8. FPGA prototyping

CHAPTER
NINE

FPGA PROTOTYPING WITH PREBUILT MATERIAL

With the provided prebuilt material, the users can run the tutorial on FPGA directly, without the need for all the
configuration, compilation and synthesis steps. We normally provide the prebuilt set, where the name of each tar.
gz folder specifies the FPGA target board and the processor core used.

Here is a list of the prebuilt files, their description and the path where to place them inside the ESP repository:

e For the Xilinx VC707 board <fpga-board>=xilinx-vc707-xc7vx485t. For the Xilinx
VCUI118 board <fpga-board>=xilinx-vcull8-xcvu9Ip. For the Xilinx VCUI128 board
<fpga-board>=xilinx-vcul28-xcvu37p.

- top.bit: FPGA bitstream. Place this file in socs/<fpga-board>/vivado/
esp-<fpga-board>.runs/impl_1/.

— systest.bin, prom.bin: bare-metal “Hello ESP!” application and Leon3 boot loader. Place these
files in socs/<fpga-board>/.

— linux.bin: Linux image which includes the root file system. Place these files in socs/
<fpga-board>/.

After placing the prebuilt files in the right folders, follow the Debug link configuration instructions above. The
ESP debug link in the prebuilt bitstream has IP 0xC0A80102 (192.168.1.2) and MAC 0x535522F00707
for the VC707 and VCU118 boards and IP 0xCOA8010C (192.168.1.12)and MAC 0xA6A7AQ0F80442 for the
VCU128 board. Set them appropriately in the Grlib configuration GUI and save. The debug link is described above in
the Debug link configuration section.

Note: the configuration of the MAC and IP address pairs in the latest version of ESP on Git may differ
from the values set for the prebuilt material.

Finally, to run the tutorial on the FPGA you only need some of the steps described in the previous section: FPGA
programming, UART interface, Testing on FPGA, SSH.

Back to top

21

ESP: The Open Source SoC Platform, Release 2021.1.0

22 Chapter 9. FPGA prototyping with prebuilt material

CHAPTER
TEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

23

	 Guide – How to: design a single-core SoC
	Target FPGA board
	SoC configuration
	Debug link configuration
	a) Direct link
	b) Link through a router

	ESP Cache Hierarchy
	Optional: HLS-Based Cache Hierarchy
	RTL simulation
	FPGA prototyping
	Bitstream
	Bare-metal and Linux applications
	FPGA programming
	UART interface
	Testing on FPGA
	SSH

	FPGA prototyping with prebuilt material
	Indices and tables

